浪潮信息获CVPR2024自动驾驶挑战赛"Occupancy& Flow"冠军
北京2024年6月25日 /美通社/ -- 近日,在全球权威的CVPR 2024自动驾驶国际挑战赛(Autonomous Grand Challenge)中,浪潮信息AI团队所提交的"F-OCC"算法模型以48.9%的出色成绩斩获占据栅格和运动估计(Occupancy & Flow)赛道第一名。继22、23年在纯视觉和多模态等自动驾驶感知方向,多次登顶nuSences 3D目标检测榜单后,该AI团队面向Occupancy技术再一次实现突破,实现了对高度动态及不规则的驾驶场景更精准的3D感知及运动预测。
CVPR 2024自动驾驶国际挑战赛是国际计算机视觉与模式识别会议(IEEE/CVF Conference on Computer Vision and Pattern Recognition)的一个重要组成部分,专注于自动驾驶领域的技术创新和应用研究。2024年CVPR自动驾驶国际挑战赛,包含感知、预测、规划三大方向七个赛道,旨在深入探索自动驾驶领域的前沿课题。
三维感知和预测是自动驾驶领域的新兴任务,要求对车辆行驶场景进行细粒度建模,对于提升自动驾驶的环境感知能力有着重要意义。此次浪潮信息AI团队所登顶的占据栅格和运动估计(Occupancy & Flow)赛道,是CVPR 2024自动驾驶国际挑战赛最受关注的赛道,聚焦感知任务,吸引了全球17个国家和地区,90余支顶尖AI团队参与挑战。比赛提供了基于 nuScenes 数据集的大规模占用栅格数据与评测标准,要求参赛队伍利用相机图像信息对栅格化三维空间的占据情况(Occupancy)和运动(Flow)进行预测,以此来评估感知系统对高度动态及不规则驾驶场景的表示能力。
- 占据栅格 Occupancy:挑战更精细的环境感知与预测
道路布局的复杂性、交通工具的多样性以及行人流量的密集性,是当前城市道路交通的现状,也是自动驾驶领域面临的现实挑战。为了应对这一挑战,有效的障碍物识别和避障策略,以及对三维环境的感知和理解就变得至关重要。传统的三维物体检测方法通常使用边界框来表示物体的位置和大小,但对于几何形状复杂的物体,这种方法往往无法准确描述其形状特征,同时也会忽略对背景元素的感知。因此,基于三维边界框的传统感知方法已经无法满足复杂道路环境下的精准感知和预测需求。
图2 - 针对挖车中的力臂,3D目标检测算法只能给出挖车整体的轮廓框(左),但占据栅格网络却可以更精准地描述挖车具体的几何形状这类细节信息(右)
Occupancy Networks(占据栅格网络) 作为一种全新的自动驾驶感知算法,通过获取立体的栅格占据信息,使系统能够在三维空间中确定物体的位置和形状,进而有效识别和处理那些未被明确标注或形状复杂的障碍物,如异形车、路上的石头、散落的纸箱等。这种占据栅格网络使得自动驾驶系统能够更准确地理解周围的环境,不仅能识别物体,还能区分静态和动态物体。并以较高的分辨率和精度表示三维环境,对提升自动驾驶系统在复杂场景下的安全性、精度和可靠性至关重要。
- 全面提升!48.9%的绝佳性能表现,创本赛道最高成绩
在占据栅格和运动估计(Occupancy & Flow)赛道中,该AI团队所提交的"F-OCC"算法模型,凭借先进的模型结构设计、数据处理能力和算子优化能力,实现了该赛道最强模型性能,在RayIoU(基于投射光线的方式评估栅格的占用情况)及mAVE(平均速度误差)两个评测指标中均获得最高成绩。
■ 更简洁高效的模型架构,实现运算效率与检测性能双突破
首先,模型整体选择基于前向投影的感知架构,并采用高效且性能良好的FlashInternImage模型。同时,通过对整体流程进行超参调优、算子加速等优化,在占据栅格(Occupancy)和运动估计(Flow)均获得最高分的同时,提升了模型的运算效率,加快了模型迭代与推理速度。在实际应用场景中,这种改进使得模型能够更快速、高效地处理大规模3D体素数据,使得自动驾驶车辆能更好地理解环境,进而提升决策的准确度和实时性。
■ 更强大完善的数据处理,全面提升模型检测能力
在数据处理方面,比赛提供的体素(Voxel)标签包含了大量在图像中无法观测到的点,例如被物体遮挡的体素和物体内部不可见的体素,这些标签在训练过程中会对基于图像数据的预测网络训练产生干扰。在训练数据中,该AI团队通过模拟LiDAR光束的方法,生成可视化掩码,提升了模型的预测精度;另一方面,通过引入感知范围边缘的体素点参与训练,有效解决出现在感知边缘区域的误检问题,将模型的整体检测性能提升11%。
■ 更精细的3D体素编码,模型占据预测能力提升超5%
在3D体素特征编码模块中,该算法团队将具有较大感知范围和编码能力的可形变卷积操作应用于3D体素数据,以提升3D特征的表示能力。通过使用CUDA对可形变3D卷积(DCN3D)进行实现与优化,大幅提升了模型的运算速度,并有效降低了显存消耗。通过DCN3D替代传统3D卷积,模型整体占据预测能力提升超5%。
基于OCC 3D空间感知算法的创新, "F-OCC"算法模型成功登顶占据栅格和运动估计任务(Occupancy & Flow)榜单,以48.9%的出色成绩创造了本赛道的最高成绩,为探索更高级别的自动驾驶技术提供了有力的支撑与经验。未来,浪潮信息AI团队将践行多角度切入,发挥算法、算力融合的AI全栈优化能力,推动自动驾驶领域的技术创新发展。
* 备注:文内所涉术语解释如下 |
Occupancy:在自动驾驶领域,通常称为“占据栅格”或“占用栅格”,其是一种3D语义占用感知方法,通过生成车辆周围环境的三维占用网格,为自动驾驶车辆提供障碍物检测、路径规划和车辆控制等关键功能; |
RayIoU:是指通过光线投射的方式评估占据网格的占用情况(Ray-based Intersection over Union),RayIoU可以用来衡量预测的占据网格与实际占据网格之间的重叠程度。RayIoU越高意味着预测准确度越高,模型性能越好; |
mAVE: 是指平均速度误差(Mean Absolute Velocity Error),其用于评估预测速度与真实速度之间的平均误差。mAVE值越低意味着预测结果与真值越接近; |
体素(Voxel):体积元素(Volume Pixel)的简称体积元素(Volume Pixel)的简称,其类似于二维图像中的像素,是构成三维图像的基本单元。 |
- 历山 • 进己 - 始祖鸟博物馆开启全新进化篇章
- 才胜科技云商城:一站式购物新体验,开启智慧生活新篇章
- 因美纳携手冷泉港亚洲DNA学习中心普及科学教育促新质生产力发展
- 中国国际贸易平台:连接全球,共创商机
- TÜV南德受邀于CICV 2024发表演讲,助力行业实践DCAS合规
- 双喜电器参加中国现代厨房发展大会 获封现代厨房分会会员单位
- 丹佛斯传动推出iC2-Micro功率扩展产品,聚焦绿色转型与设备出海
- 新西兰牛羊肉协会携手本土合作伙伴,邀您共赴舌尖上的自然盛宴
- 普恒国际与明捷中国签署合作备忘录
- 华为5G移动核心网在GlobalData连续六年排名第一
- 成都信息工程大学发布“知识产权惠民计划”联手猪八戒网推进创新成果批量转化
- 嘉和美康以“数智引擎”激发医院临床新质生产力
- 哈罗德公馆会员俱乐部举办两日沪上盛典,与会员共度尊享时刻
- 光大环境固本拓新成效显著 积极布局丰富业态
- 国产电影囊括全国电影票房前十
- 安盛天平315在行动 金融宣教走进千家万户
- 潮品老字号 国货LU锋芒丨“潮牌”雷允上在老字号展会掀起养生浪潮
- 了不起的植物成分!花皙蔻打造牡丹护肤“芯”可能
- DEKRA德凯成功举办昆山检测中心奠基仪式,投资助力汽车及电子行业品质升级
- 品创控股入股杭州拜偲科 瞄准万亿电商市场
- 博安生物发布2023年全年业绩
- 新疆有个疆果果,专注新疆大坚果,引领健康食品新潮流!
- 欧姆龙发布《2023年中国地区可持续发展信息》
- 理邦与Global Health Labs, Inc签署许可和商业化协议,破局“AI+掌上超声”!
- TreeFrog首席科学官兼联合创始人Maxime Feyeux将出席日本再生医学学会(JSRM)第 23 届大会
- 华为发布全场景智能通信电源解决方案
- 假期打卡哈尔滨,品味秋林里道斯红肠是“必须滴”
- IBM + X-POWER + 源卓微纳:以AI会友,共创制造业智能化故事2.0
- TÜV莱茵出席深圳市2024年"世界认可日"主题活动
- 富卫集团公布2024年第一季度稳健业绩