代写Upper and Lower Bounds on Pizza Items
Table 2: Upper and Lower Bounds on Pizza Items
Item Upper Bounds* Lower Bound*
sauce 1.986 1.140
dough 5.249 N/A
cheese 2.270 1.703
pepperoni 0.983 N/A
ham 1.135 N/A
bacon 0.993 N/A
g.pepper 1.561 N/A
onion 0.993 N/A
celery 1.561 N/A
mushroom 1.135 N/A
tomato 1.703 N/A
pineapple 1.703 N/A
meat 1.490 0.993
veg. N/A 0.993
fungi N/A 0.922
* Amount in hundreds of grams.
Table 3: Nutritional Decomposition of Pizza Items **
Item Calc Iron Prot Vit A Thia Niac Ribo Vit C
cheese 517.700 .222 20.000 3000.000 .022 6.000 .244 -
sauce 14.000 1.800 2.000 800.000 0.100 1.400 .060 6.000
dough 18.233 3.826 14.224 - .586 8.852 .628 -
pepperoni 10.000 2.500 15.000 - - 2.000 - -
ham 9.031 2.291 14.692 - .740 4.009 0.178 -
bacon 13.000 1.189 8.392 - .361 1.828 .114 -
g.pepper 9.459 .675 1.351 209.460 .081 .540 .081 127.030
onion 27.273 .545 1.818 18.182 .363 .545 .036 10.000
celery 40.000 .250 - 125.000 .025 .500 .025 10.000
mushroom 6.000 .800 3.000 - .100 4.300 .460 3.000
tomato 13.333 .533 1.333 450.000 .066 .800 .04 22.667
pineapple 12.016 .310 .387 25.194 .081 .193 .019 6.977
** Units as in Table 1.
Table 4: Costs of Pizza Items
Item Cost in cents/100 grams
cheese 95.53
sauce 72.24
dough 19.74
pepperoni 90.43
ham 90.30
bacon 90.75
green pepper 51.46
onion 10.93
celery 28.99
mushrooms 63.96
tomatoes 45.16
pineapple 53.26
2
2. Portfolio Selection Problem. An individual with $100,000 to invest has identified three mutual
funds as attractive opportunities. Over the last five years, dividend payments (in cents per dollar invested)
have been as shown in Table 5, and the individual assumes that these payments are indicative of what
can be expected in the future. This particular individual has three requirements:
(1) the combined expected yearly return from her/his investments must be no less than $2,000, i.e.,
the amount $100,000 would earn at 2 percent interest, and
(2) the variance in future, yearly, dividend payments should be as small as possible, and
(3) the amount invested in Investment 1 must be at least the amount invested in Investment 3.
How much should this individual fully invest her/his $100,000 in each fund to achieve these requirements?
Table 5: Dividend Payments
Years
1 2 3 4 5
Investment 1 5 8 8 3 1
Investment 2 4 3 6 2 0
Investment 3 5 6 4 3 2
[Hint: Let xi, i = 1, 2, 3, designate the amount of funds to be allocated to investment i, and let xik denote
the return per dollar invested from investment i during the kth time period in the past (k = 1, 2,..., 5).
If the past history of payments is indicative of future performance, the expected return per dollar from
investment i is
Ei = 1
5
X
5
k=1
xik.
The variance in future payments can be expressed as
f(x1, x2, x3) = X
3
i=1
X
3
j=1
2
ijxixj = x>Cx,
where the covariances 2
ij are given by
2
ij = 1
5
X
5
k=1
xikxjk 1
52
X
5
k=1
xik! X
5
k=1
xjk!
. ]
(a) Using the following table, calculate the covariance matrix C = [2
ij ].
Table 6: Intermediate Calculations
k x1k x2k x3k x2
1k x2
2k x2
3k x1kx2k x1kx3k x2kx3k
1 5 4 5 25 16 25 20 25 20
2 8 3 6 64 9 36 24 48 18
3 8 6 4 64 36 16 48 32 24
4 3 2 3 9 4 9 6 9 6
5 1 0 2 1 0 4 0 2 0
total 25 15 20 163 65 90 98 116 68
(b) Set up a standard form optimization problem (i.e. quadratic optimization problem) that will determine the best investment mix.
(c) Solve the problem using the MATLAB quadratic programming routine quadprog. Interpret your
results in plain English.
3
3. Consider the optimization problem
(P1) min x2Rm
Xm
i=1
xi
s.t. Ym
i=1
xi = b,
xi 0, i = 1, . . . , m,
where b > 0 is some constant. The product notation means that Qm
i=1 xi = x1x2 ...xm. Assume that the
problem (P1) has a global minimizer.
(a) Find a constrained stationary point x¯ of (P1).
(b) Using only first-order information, explain why the constrained stationary point x¯ of part (a) is a
global minimizer for (P1).
(c) Hence or otherwise, show that, if x1,...,xm 0, then
1
m
Xm
i=1
xi
⇣Ym
i=1
xi
⌘1/m
.
4. Consider the following inequality constrained optimization problem
(P2) min x2Rn f(x)
s.t. gi(x) 0, i = 1, . . . , m,
where f : Rn ! R and gi : Rn ! R are di↵erentiable functions. Let x⇤ 2 Rn be a feasible point of
(P2) at which Karush-Kuhn-Tucker conditions are satisfied with Lagrange multipliers ⇤
i , i = 1, 2,...,m.
Assume that the functions f and gi’s satisfy the following generalized convexity condition:
For each x 2 Rn,
f(x) f(x⇤) rf(x⇤)
>⌘(x, x⇤)
gi(x) gi(x⇤) rgi(x⇤)
>⌘(x, x⇤)
for some function ⌘ : Rn ⇥ Rn ! Rn. Show that x⇤ is a global minimizer for (P2).
NOTES: Essential information for accessing files from the MATH3161/MATH5165 Course Web page
and for using Matlab.
• Matlab can be accessed from your own laptop using the myAccess service. (see the link on the
Course Web-page, UNSW Moodle, Computing facilities (labs, virtual apps, software).
• Matlab M-files can be obtained from Matlab Worksheets in Class Resources at the Course Webpage, UNSW Moodle. The Matlab files for Q1, Problem Sheet 1 (ss24.m) and for Q5, Problem
Sheet 6 (qp24.m) are available at this page in the assignment folder.
• Matlab is run by typing
matlab
at the UNIX prompt. Inside Matlab use ‘help command’ to get help,
e.g.
help optim
help linprog
help quadprog
4
• To run a Matlab .m file from within Matlab simply type the name of the file:
ss24
This assumes the file ss24.m is in the current directory (use the UNIX command ‘ls’ to see what
files you have; if it is not there get a copy of the file from Matlab worksheets page at the Course
Web page and save it as ss24.m).
• An entire Matlab session, or a part of one, can be recorded in a user-editable file, by means of the
diary command. The recording is terminated by the command diary off. A copy of the output
produced by Matlab can be stored in the file ‘ss24.out’ by typing diary ss24.out For example
diary ss24.txt
ss24
diary off
will save a copy of all output in the file ss24.txt
• The file ss24.out may be viewed using ‘more’ or any text editor (xedit, vi) or printed using the ‘lpr’
command.
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- Ins高效筛选助手,Instagram群发代发工具,让你的营销更高效!
- 小米汽车计划2月量产,预计7月可月产万辆
- 一键推送,万众瞩目!Telegram群发云控让您的品牌在瞬间引爆市场
- ins强力引流神器来袭!Instagram群发营销软件,Ins客户引流不再愁!
- 新疆维吾尔自治区卫健委领导莅临神州医疗大兴产品研发及产业化基地调研指导
- CapitalXtend以卓越的监管水平为中国交易者铺平道路
- WhatsApp如何养号,ws群发操作/ws协议号活用/ws频道号应用/ws劫持号信息
- KXO151代做、代写Java设计编程
- 华秋荣膺2023年度中国智能生产杰出应用奖,一站式数智化服务引领电子产业创新升级
- Discover Cutting-Edge Innovations: ChipsX Showcases Future Technologies at IPC APEX EXPO 2024!
- 倍成就 WhatsApp拉群营销工具 为你的销售数字描绘辉煌
- “画游千里江山”亮相2024北京台春晚龙行北京会场
- WhatsApp云控注册软件/ws筛选工具/ws协议号/ws群发/ws业务咨询大轩
- 突破创意瓶颈 WhatsApp拉群营销工具助你走向创意的新高度
- 安徽谷器数据荣获“2023年度数字化服务创新引领奖”
- WhatsApp购买协议号方式/ws劫持号频道号快速购买
- Instagram营销软件,ins自动私信工具推荐/ig最强引流工具
- TG-WS-LINE频道号市场颠覆者:zalo代筛料子推广助您领跑竞争
- 印度#Telegram协议号-telegram劫持号-telepram拉群软件稳定耐用欢迎盘口直购
- 代写Simple Transport Protocol (STP) UDP protocol.
- 雪浪云工业知识中台,开启知识管理新篇章
- 代做divide-and-conquer algorithm
- 代写COMP3331/9331 Computer Networks
- 家居建材网:打造您的理想家居,一站式购物新体验
- 未来ins拉群软件之谜:2024年是否还存在ins群发协议神秘的未知商机
- 9月BTE第8届广州国际生物技术大会暨展览会,全媒体聚焦下的高精尖行业盛会
- 初出茅庐的喜悦 她通过WhatsApp拉群工具实现了全球品牌的极速传播 覆盖面达到了95%
- Ins引流工具全新升级,Instagram群发工具助你实现营销突破!
- 困扰于推广费用 WhatsApp拉群工具助您精打细算解决预算问题
- 代写Operations Analytics、代做Python程序设计
推荐
- 疫情期间 这个品牌实现了疯狂扩张 记得第一次喝瑞幸,还是2017年底去北京出差的 科技
- 如何经营一家好企业,需要具备什么要素特点 我们大多数人刚开始创办一家企业都遇到经营 科技
- 升级的脉脉,正在以招聘业务铺开商业化版图 长久以来,求职信息流不对称、单向的信息传递 科技
- 智慧驱动 共创未来| 东芝硬盘创新数据存储技术 为期三天的第五届中国(昆明)南亚社会公共安 科技
- B站更新决策机构名单:共有 29 名掌权管理者,包括陈睿、徐逸、李旎、樊欣等人 1 月 15 日消息,据界面新闻,B站上周发布内部 科技
- 创意驱动增长,Adobe护城河够深吗? Adobe通过其Creative Cloud订阅捆绑包具有 科技
- 老杨第一次再度抓握住一瓶水,他由此产生了新的憧憬 瘫痪十四年后,老杨第一次再度抓握住一瓶水,他 科技
- 全力打造中国“创业之都”名片,第十届中国创业者大会将在郑州召开 北京创业科创科技中心主办的第十届中国创业 科技
- 丰田章男称未来依然需要内燃机 已经启动电动机新项目 尽管电动车在全球范围内持续崛起,但丰田章男 科技
- 苹果罕见大降价,华为的压力给到了? 1、苹果官网罕见大降价冲上热搜。原因是苹 科技