CS 6347代做、MATLAB程序设计代写
Problem Set 4
CS 6347
Due: 4/25/2024 by 11:59pm
Note: all answers should be accompanied by explanations for full credit. Late homeworks
cannot be accepted. All submitted code MUST compile/run.
Problem 1: Expectation Maximization for Colorings (40 pts)
For this problem, we will use the same factorization as we have in past assignments. As on the
previous assignment, the weights will now be considered parameters of the model that need to be
learned from samples.
Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
of the observed variables in V L, what is the log-likelihood as a function of the weights? Perform
MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
th sample
(you should discard any inputs related to the latent variables). The output should be the vector of
weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
you should use belief propagation to approximate the counting problem in the E-step.
function w = colorem(A, L, samples)
Problem 2: EM for Bayesian Networks (60pts)
For this problem, you will use the house-votes-84.data data set provided with this problem set.
Each row of the provided data file corresponds to a single observation of a voting record for a
congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
different legislation with question marks denoting missing data.
1. Using the first three features and the first 300 data observations only, fit a Bayesian network
to this data using the EM algorithm for each of the eight possible complete DAGs over three
variables.
2. Do different runs of the EM algorithm produce different models?
3. Evaluate your eight models, on the data that was not used for training, for the task of
predicting party affiliation given the values of the other two features. Is the prediction highly
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- Ins群发工具震撼发布,Instagram营销软件助你快速引流!
- 国美金融集中发力AI:多维度智能风控,全面推进数字化转型升级
- 高效互动,用户黏性UP!用 跨境电商VB代拉群引领品牌与用户的深度互动!
- ins群发软件,ins营销软件,欢迎联系天宇爆粉【TG:@cjhshk199937】预约测试
- 跨境推广新选择!Telegram群发云控带您挖掘海外市场的无限商机
- 小土豆们一起穿越南北,品尔滨们YonSuite的魅力烟火
- 智能肿瘤学知识库启动 神州医疗以AI创新驱动医疗变革
- Telegram引流群发营销软件引快速扩客方式推荐
- Instagram引流营销助手,Ins拉群软件,共同助你实现营销目标!
- COMP3334代做、SQL设计编程代写
- 业界智者首选WhatsApp工具成功博主亲自示范如何揭示市场趋势事业稳步上升
- Instagram营销软件 - ins采集软件/ig采集助手/ins群发助手/一键引流
- WhatsApp群发软件,ws怎么拉群引流/ws协议号/ws代拉群咨询大轩
- 国家重点研发计划“儿童罕见病诊断关键技术与治疗靶点发现及转化医学研究”项目启动
- 外贸新星的成长之路 WhatsApp拉群工具为我解锁了业务的新奇门道
- 跨境电商!商家利用 telepram 群发协议,品牌推广如虎添翼
- 2024“一带一路”瓜菜产业发展大会震撼启动 “新十年 新发展”,共迎国际盛会
- Ins注册营销软件,Instagram高效筛选助手,让你轻松注册!
- XA2S300E-6FT256I: Revolutionizing Embedded Systems with High-Performance FPGA Technology | ChipsX
- 海外反馈机制:全球app云筛在全球用户沟通中的关键作用
- 河北装饰装修:匠心独运,缔造家居美学新风尚
- 群发新时代 WhatsApp拉群工具由专业人士带您突破风控限制 事半功倍
- Ins自动采集工具,Ig博主采集工具,instagram采集软件
- 西部数据通过ASPICE CL3评估认证,满足汽车行业不断变化的需求
- TG群发营销神器,电报高效群发软件,Telegram群发助手推荐
- Instagram群发助手,ins引流如何普遍全球/ig私信工具
- 商家利器,用户信赖!打造品牌曝光新高度的 跨境电商WhatsApp代拉群
- Instagram采集指定地区用户,ins接粉软件,ig打粉软件
- 再突破!仁济医院嘉定分院完成国产单孔机器人医源性输尿管狭窄修复术
- WhatsApp筛选器拉群:“风向标营销WhatsApp推广工具引领你紧随时势成为潮流中的佼佼者”
推荐
- 创意驱动增长,Adobe护城河够深吗? Adobe通过其Creative Cloud订阅捆绑包具有 科技
- 如何经营一家好企业,需要具备什么要素特点 我们大多数人刚开始创办一家企业都遇到经营 科技
- 丰田章男称未来依然需要内燃机 已经启动电动机新项目 尽管电动车在全球范围内持续崛起,但丰田章男 科技
- 升级的脉脉,正在以招聘业务铺开商业化版图 长久以来,求职信息流不对称、单向的信息传递 科技
- 疫情期间 这个品牌实现了疯狂扩张 记得第一次喝瑞幸,还是2017年底去北京出差的 科技
- 老杨第一次再度抓握住一瓶水,他由此产生了新的憧憬 瘫痪十四年后,老杨第一次再度抓握住一瓶水,他 科技
- B站更新决策机构名单:共有 29 名掌权管理者,包括陈睿、徐逸、李旎、樊欣等人 1 月 15 日消息,据界面新闻,B站上周发布内部 科技
- 苹果罕见大降价,华为的压力给到了? 1、苹果官网罕见大降价冲上热搜。原因是苹 科技
- 智慧驱动 共创未来| 东芝硬盘创新数据存储技术 为期三天的第五届中国(昆明)南亚社会公共安 科技
- 全力打造中国“创业之都”名片,第十届中国创业者大会将在郑州召开 北京创业科创科技中心主办的第十届中国创业 科技