代写COMP34212、代做Python/c++程序设计
COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- Ins爆粉机器人,Instagram引流营销软件全球震撼推荐!
- 国际市场 我有WhatsApp拉群营销工具 我无所畏惧
- WhatsApp协议号注册器,智能推广工具,带您走向网络通信的新高度
- COMP9334代做、代写Python设计程序
- 威雅学校直播预告:对话阿斯顿·马丁首席创意官
- CHC5223代做、java语言编程代写
- Instagram采集指定地区 - ins群发软件/ig群发工具/ins营销助手
- Instagram养号软件,Ins群发工具,ig引流营销教学
- Telegram定位坐标采集营销软件,TG全球坐标定位采集软件,电报群组坐标采集利器
- COMP 330代做、Python设计程序代写
- 不知道如何在WhatsApp拉群上引爆品牌 这个工具一键解决你的烦恼 品牌传播无压力
- XCR3064XL-7VQG44I: Pioneering FPGA Solutions for Compact Designs | ChipsX
- 春游江淮 请来池州 | 来青阳,轻煮时光慢煮茶
- Telegram定位坐标采集器,TG全球坐标定位采集软件,电报群组坐标采集利器
- 代写COMP282、代做C++语言程序
- 北京星来律师事务所三周年庆典暨第三届星来企业合规高端论坛成功举办
- 电报/TG群发提高转化软件,Telegram/TG自动化营销工具,TG/纸飞机群发拉群系统
- 代做IERG 4080、代写Python程序语言
- ins群发软件,ins拉群软件联系天宇爆粉【TG:@cjhshk199937】
- 代做EECE 6083、c/c++设计程序代写
- 全球营销专家 : telepram 群发协议助力商家,品牌曝光再不是难题
- Instagram营销软件,ins如何快速群发/ig精准引流神器推荐/联系大轩测试
- 无线投屏器推荐,皓丽基础款、专业款、升级款投屏器怎么选?
- iOS首次出现木马病毒 苹果“安全”神话破灭?!
- 代做COMP27112、代写C/C++程序语言
- 全线产品跃升高端!一场“国展”见证东软医疗的底气与实力
- CapitalXtend以卓越的监管水平为中国交易者铺平道路
- ins群发软件,ins营销软件,ins拉群软件天宇爆粉【TG:@cjhshk199937】
- Computer Lab 代做、代写C++编程语言
- 掌上汽车:引领智能出行新风尚
推荐
- 老杨第一次再度抓握住一瓶水,他由此产生了新的憧憬 瘫痪十四年后,老杨第一次再度抓握住一瓶水,他 科技
- 创意驱动增长,Adobe护城河够深吗? Adobe通过其Creative Cloud订阅捆绑包具有 科技
- 全力打造中国“创业之都”名片,第十届中国创业者大会将在郑州召开 北京创业科创科技中心主办的第十届中国创业 科技
- 如何经营一家好企业,需要具备什么要素特点 我们大多数人刚开始创办一家企业都遇到经营 科技
- 疫情期间 这个品牌实现了疯狂扩张 记得第一次喝瑞幸,还是2017年底去北京出差的 科技
- B站更新决策机构名单:共有 29 名掌权管理者,包括陈睿、徐逸、李旎、樊欣等人 1 月 15 日消息,据界面新闻,B站上周发布内部 科技
- 丰田章男称未来依然需要内燃机 已经启动电动机新项目 尽管电动车在全球范围内持续崛起,但丰田章男 科技
- 升级的脉脉,正在以招聘业务铺开商业化版图 长久以来,求职信息流不对称、单向的信息传递 科技
- 苹果罕见大降价,华为的压力给到了? 1、苹果官网罕见大降价冲上热搜。原因是苹 科技
- 智慧驱动 共创未来| 东芝硬盘创新数据存储技术 为期三天的第五届中国(昆明)南亚社会公共安 科技